
Web Technologies Unit II

What is JavaScript?

 JavaScript was designed to add interactivity to HTML pages

 JavaScript is a scripting language

 A scripting language is a lightweight programming language

 JavaScript is usually embedded directly into HTML pages

 JavaScript is an interpreted language (means that scripts execute without preliminary

compilation)

 Everyone can use JavaScript without purchasing a license

What can a JavaScript do?

 JavaScript gives HTML designers a programming tool - HTML authors are

normally not programmers, but JavaScript is a scripting language with a very simple

syntax! Almost anyone can put small "snippets" of code into their HTML pages

 JavaScript can put dynamic text into an HTML page - A JavaScript statement like

this: document.write("<h1>" + name + "</h1>") can write a variable text into an

HTML page

 JavaScript can react to events - A JavaScript can be set to execute when something

happens, like when a page has finished loading or when a user clicks on an HTML

element

 JavaScript can read and write HTML elements - A JavaScript can read and change

the content of an HTML element

 JavaScript can be used to validate data - A JavaScript can be used to validate form

data before it is submitted to a server. This saves the server from extra processing

 JavaScript can be used to detect the visitor's browser - A JavaScript can be used to

detect the visitor's browser, and - depending on the browser - load another page

specifically designed for that browser

 JavaScript can be used to create cookies - A JavaScript can be used to store and

retrieve information on the visitor's computer

The Real Name is ECMAScript

 JavaScript's official name is ECMAScript.

 ECMAScript is developed and maintained by the ECMA organization.

 ECMA-262 is the official JavaScript standard.

 The language was invented by Brendan Eich at Netscape (with Navigator 2.0), and

has appeared in all Netscape and Microsoft browsers since 1996.

 The development of ECMA-262 started in 1996, and the first edition of was adopted

by the ECMA General Assembly in June 1997.

 The standard was approved as an international ISO (ISO/IEC 16262) standard in

1

Web Technologies Unit II

1998.

Example:

<html>

<body>

<script type="text/javascript">

document.write("<h1>Hello World!</h1>");

</script>

</body>

</html>

Output:

 To insert a JavaScript into an HTML page, we use the <script> tag. Inside the

<script> tag we use the type attribute to define the scripting language.

 So, the <script type="text/javascript"> and </script> tells where the JavaScript starts

and ends:

 The document.write command is a standard JavaScript command for writing output

to a page.

 By entering the document.write command between the <script> and </script> tags,

the browser will recognize it as a JavaScript command and execute the code line. In

this case the browser will write Hello World! to the page:

Where to Put the JavaScript

 JavaScripts in a page will be executed immediately while the page loads into the

browser. This is not always what we want. Sometimes we want to execute a script

when a page loads, or at a later event, such as when a user clicks a button. When this

is the case we put the script inside a function.

Scripts in <head>

 Scripts to be executed when they are called, or when an event is triggered, are placed

in functions.

Web Technologies Unit II

 Put your functions in the head section, this way they are all in one place, and they do

not interfere with page content.

Example

<html>

<head>

<script type="text/javascript">

function message()

{

alert("This alert box was called with the onload event");

}

</script>

</head>

<body onload="message()">

</body>

</html>

Output:

Scripts in <body>

 If you don't want your script to be placed inside a function, or if your script should

write page content, it should be placed in the body section.

Example

<html>

<head></head>

3

Web Technologies Unit II

<body>

</body>

</html>

<script type="text/javascript">

document.write("This message is written by JavaScript");

</script>

Scripts in <head> and <body>

 You can place an unlimited number of scripts in your document, so you can have

scripts in both the body and the head section.

Example

<html>

<head>

<script type="text/javascript">

function message()

{

alert("This alert box was called with the onload event");

}

</script>

</head>

<body onload="message()">

<script type="text/javascript">

document.write("This message is written by JavaScript");

</script>

</body>

</html>

Using an External JavaScript

 If you want to run the same JavaScript on several pages, without having to write the

same script on every page, you can write a JavaScript in an external file.

 Save the external JavaScript file with a .js file extension.

Note: The external script cannot contain the <script></script> tags!

 To use the external script, point to the .js file in the "src" attribute of the <script> tag.

Example

<html>

</html>

<head>

<script type="text/javascript" src="xxx.js"></script>

</head> <body></body>

4

Web Technologies Unit II

5

JavaScript is Case Sensitive: Unlike HTML, JavaScript is case.

JavaScript Statements: A JavaScript statement is a command to a browser. The purpose of

the command is to tell the browser what to do.

JavaScript Comments:

 Comments can be added to explain the JavaScript, or to make the code more readable.

 Single line comments start with //.

JavaScript Multi-Line Comments: Multi line comments start with /* and end with */.

Do You Remember Algebra From School?

 Do you remember algebra from school? x=5, y=6, z=x+y

 Do you remember that a letter (like x) could be used to hold a value (like 5), and that

you could use the information above to calculate the value of z to be 11?

 These letters are called variables, and variables can be used to hold values (x=5) or

expressions (z=x+y).

JavaScript Variables

 As with algebra, JavaScript variables are used to hold values or expressions.

 A variable can have a short name, like x, or a more descriptive name, like carname.

 Rules for JavaScript variable names:

 Variable names are case sensitive (y and Y are two different variables)

 Variable names must begin with a letter or the underscore character

Note: Because JavaScript is case-sensitive, variable names are case-sensitive.

Declaring (Creating) JavaScript Variables

 Creating variables in JavaScript is most often referred to as "declaring" variables.

 You can declare JavaScript variables with the var keyword:

var x;

var carname;

 After the declaration shown above, the variables are empty (they have no values yet).

 However, you can also assign values to the variables when you declare them:

var x=5;

var carname="Volvo";

Web Technologies Unit II

6

 After the execution of the statements above, the variable x will hold the value 5, and

carname will hold the value Volvo.

Note: When you assign a text value to a variable, use quotes around the value.

Assigning Values to Undeclared JavaScript Variables

 If you assign values to variables that have not yet been declared, the variables will

automatically be declared.

 These statements:

 x=5;

carname="Volvo";

have the same effect as:

var x=5;

var carname="Volvo";

JavaScript Arithmetic Operators

 Arithmetic operators are used to perform arithmetic between variables and/or values.

Given that y=5, the table below explains the arithmetic operators:

Operator Description Example Result

+ Addition x=y+2 x=7

- Subtraction x=y-2 x=3

* Multiplication x=y*2 x=10

/ Division x=y/2 x=2.5

% Modulus (division remainder) x=y%2 x=1

++ Increment x=++y x=6

-- Decrement x=--y x=4

JavaScript Assignment Operators

 Assignment operators are used to assign values to JavaScript variables.

Given that x=10 and y=5, the table below explains the assignment operators:

Web Technologies Unit II

7

Operator Example Same As Result

= x=y x=5

+= x+=y x=x+y x=15

-= x-=y x=x-y x=5

= x=y x=x*y x=50

/= x/=y x=x/y x=2

%= x%=y x=x%y x=0

The + Operator Used on Strings

 The + operator can also be used to add string variables or text values together.

 To add two or more string variables together, use the + operator.

txt1="What a very";

txt2="nice day";

txt3=txt1+txt2;

JavaScript Comparison and Logical Operators

 Comparison and Logical operators are used to test for true or false.

Comparison Operators

 Comparison operators are used in logical statements to determine equality or

difference between variables or values.

Given that x=5, the table below explains the comparison operators:

Operator Description Example

== is equal to x==8 is false

=== is exactly equal to (value and type) x===5 is true

x==="5" is false

!= is not equal x!=8 is true

> is greater than x>8 is false

< is less than x<8 is true

>= is greater than or equal to x>=8 is false

<= is less than or equal to x<=8 is true

Web Technologies Unit II

.

Logical Operators

 Logical operators are used to determine the logic between variables or values.

Given that x=6 and y=3, the table below explains the logical operators:

Operator Description Example

&& and (x < 10 && y > 1) is true

|| or (x==5 || y==5) is false

! not !(x==y) is true

Conditional Operator

 JavaScript also contains a conditional operator that assigns a value to a variable based

on some condition.

Syntax

Example

variablename=(condition)?value1:value2

greeting=(visitor=="PRES")?"Dear President ":"Dear ";

 If the variable visitor has the value of "PRES", then the variable greeting will be

assigned the value "Dear President " else it will be assigned "Dear".

Control Structures

If Statement

 Use the if statement to execute some code only if a specified condition is true.

Syntax

if (condition)

{

code to be executed if condition is true

}

If...else Statement

 Use the if. .. else statement to execute some code if a condition is true and another

code if the condition is not true.

Syntax

if (condition)

{

code to be executed if condition is true

8

Web Technologies Unit II

.

}

else

{

code to be executed if condition is not true

}

If...else if...else Statement

 Use the if....else if...else statement to select one of several blocks of code to be

executed.

Syntax

if (condition1)

{

code to be executed if condition1 is true

}

else if (condition2)

{

code to be executed if condition2 is true

}

else

{

code to be executed if condition1 and condition2 are not true

}

The JavaScript Switch Statement

 Use the switch statement to select one of many blocks of code to be executed.

Syntax

switch(n)

{

case 1:

execute code block 1

break;

case 2:

execute code block 2

break;

default:

code to be executed if n is different from case 1 and 2

}

 This is how it works: First we have a single expression n (most often a variable), that

Web Technologies Unit II

10

is evaluated once. The value of the expression is then compared with the values for

each case in the structure. If there is a match, the block of code associated with that

case is executed.

 Use break to prevent the code from running into the next case automatically.

JavaScript Popup Boxes

JavaScript has three kind of popup boxes: Alert box, Confirm box, and Prompt box.

Alert Box

An alert box is often used if you want to make sure information comes through to the user.

When an alert box pops up, the user will have to click "OK" to proceed.

Syntax

alert("sometext");

Example

<html>

<head>

<script type="text/javascript">

function show_alert()

{

}

</script>

</head>

<body>

alert("I am an alert box!");

</body>

</html>

Output:

<input type="button" onclick="show_alert()" value="Show alert box" />

Web Technologies Unit II

.

Confirm Box

 A confirm box is often used if you want the user to verify or accept something.

 When a confirm box pops up, the user will have to click either "OK" or "Cancel" to

proceed.

 If the user clicks "OK", the box returns true. If the user clicks "Cancel", the box

returns false.

Syntax

confirm("sometext");

Example

<html>

<head>

<script type="text/javascript">

function show_confirm()

{

var r=confirm("Press a button");

if (r==true)

{

}

</script>

</head>

<body>

}

else

{

}

alert("You pressed OK!");

alert("You pressed Cancel!");

</body>

</html>

Output:

<input type="button" onclick="show_confirm()" value="Show confirm

box" />

11

Web Technologies Unit II

.

Prompt Box

 A prompt box is often used if you want the user to input a value before entering a

page.

 When a prompt box pops up, the user will have to click either "OK" or "Cancel" to

proceed after entering an input value.

 If the user clicks "OK" the box returns the input value. If the user clicks "Cancel" the

box returns null.

Syntax

prompt("sometext","defaultvalue");

Example

<html>

<head>

<script type="text/javascript">

function show_prompt()

{

var name=prompt("Please enter your name","Harry Potter");

if (name!=null && name!="")

{

today?");

}

document.write("Hello " + name + "! How are you

}

</script>

Web Technologies Unit II

13

.

</head>

<body>

<input type="button" onclick="show_prompt()" value="Show prompt

box" />

</body>

</html>

Output:

Web Technologies Unit II

.

JavaScript Loops

 Often when you write code, you want the same block of code to run over and over

again in a row. Instead of adding several almost equal lines in a script we can use

loops to perform a task like this.

 In JavaScript, there are two different kind of loops:

 for - loops through a block of code a specified number of times

 while - loops through a block of code while a specified condition is true

The for Loop

 The for loop is used when you know in advance how many times the script should

run.

Syntax

Example

for (var=startvalue;var<=endvalue;var=var+increment)

{

code to be executed

}

 The example below defines a loop that starts with i=0. The loop will continue to run

as long as i is less than, or equal to 5. i will increase by 1 each time the loop runs.

Note: The increment parameter could also be negative, and the <= could be any

comparing statement.

Example

<html>

<body>
<script type="text/javascript">

var i=0;

for (i=0;i<=5;i++)

{

</html>

}

</script>

</body>

document.write("The number is " + i);

document.write("
");

The while Loop

 The while loop loops through a block of code while a specified condition is true.

14

Web Technologies Unit II

.

Syntax
while (var<=endvalue)

{

code to be executed

}

Example

<html>

<body>

<script type="text/javascript">

var i=0;

while (i<=5)

{

}

</script>

</body>

</html>

The do...while Loop

document.write("The number is " + i);

document.write("
");

i++;

 The do...while loop is a variant of the while loop. This loop will execute the block of

code ONCE, and then it will repeat the loop as long as the specified condition is true.

Syntax

do

{

code to be executed

}

while (var<=endvalue);

Example

<html>

<body>

<script type="text/javascript">

var i=0;

do

{

document.write("The number is " + i);

document.write("
");

i++;

}while (i<=5);

15

Web Technologies Unit II

16

</script>

</body></html>

The break Statement

 The break statement will break the loop and continue executing the code that follows

after the loop (if any).

Example

<html>

<body>

<script type="text/javascript">

var i=0;

for (i=0;i<=10;i++)

{

if (i==3)

{

}

break;

</html>

}

</script>

</body>

document.write("The number is " + i);

document.write("
");

The continue Statement

 The continue statement will break the current loop and continue with the next value.

Example

<html>

<body>

<script type="text/javascript">

var i=0

for (i=0;i<=10;i++)

{

if (i==3)

{

}

continue;

</html>

document.write("The number is " + i);

document.write("
");

}</script></body>

Web Technologies Unit II

17

JavaScript for...in Statement

 The for...in statement loops through the elements of an array or through the properties

of an object.

Syntax for (variable in object)

{

code to be executed

}

Note: The code in the body of the for...in loop is executed once for each

element/property.

Note: The variable argument can be a named variable, an array element, or a property

of an object.

Example

<html>

<body>

<script type="text/javascript">

var x;

var mycars = new Array();

mycars[0] = "Saab";

mycars[1] = "Volvo";

mycars[2] = "BMW";

for (x in mycars)

{

document.write(mycars[x] + "
");

}

</script>

</body>

</html>

Web Technologies Unit II

18

JavaScript Functions

 A function contains code that will be executed by an event or by a call to the function.

 You may call a function from anywhere within a page (or even from other pages if the

function is embedded in an external .js file).

 Functions can be defined both in the <head> and in the <body> section of a

document. However, to assure that a function is read/loaded by the browser before it

is called, it could be wise to put functions in the <head> section.

How to Define a Function

Syntax

function functionname(var1,var2,...,varX)

{

some code

}

 The parameters var1, var2, etc. are variables or values passed into the function. The {

and the } defines the start and end of the function.

Note: A function with no parameters must include the parentheses () after the

function name.

Note: Do not forget about the importance of capitals in JavaScript! The word function

must be written in lowercase letters, otherwise a JavaScript error occurs! Also note

that you must call a function with the exact same capitals as in the function name.

Example

<html>

<head>

<script type="text/javascript">

function displaymessage()

{

alert("Hello World!");

}

</script>

</head>

<body>

<form>

<input type="button" value="Click me!" onclick="displaymessage()" />

</form>

</body>

</html>

Web Technologies Unit II

19

The return Statement

 The return statement is used to specify the value that is returned from the function.

 So, functions that are going to return a value must use the return statement.

Example

 The example below returns the product of two numbers (a and b):

<html>

<head>

<script type="text/javascript">

function product(a,b)

{

return a*b;

}

</script>

</head>

<body>

<script type="text/javascript">

document.write(product(4,3));

</script>

</body>

</html>

Web Technologies Unit II

String object

 The String object is used to manipulate a stored piece of text.

 String objects are created with new String().

String Object Properties

Property Description

constructor Returns the function that created the String object's prototype

length Returns the length of a string

String Object Methods

Method Description

charAt() Returns the character at the specified index

charCodeAt() Returns the Unicode of the character at the specified index

concat() Joins two or more strings, and returns a copy of the joined strings

indexOf()
Returns the position of the first found occurrence of a specified value in a

string

lastIndexOf() Returns the position of the last found occurrence of a specified value in a string

match()
Searches for a match between a regular expression and a string, and returns the

matches

replace()
Searches for a match between a substring (or regular expression) and a string,

and replaces the matched substring with a new substring

search()
Searches for a match between a regular expression and a string, and returns the

position of the match

slice() Extracts a part of a string and returns a new string

substr()
Extracts the characters from a string, beginning at a specified start position, and

through the specified number of character

substring() Extracts the characters from a string, between two specified indices

toLowerCase() Converts a string to lowercase letters

toUpperCase() Converts a string to uppercase letters

Example: To find the length of the string

<html>
<body>

<script type="text/javascript">

var txt = "Hello World!";

document.write(txt.length);

</script>

</body></html>

20

Web Technologies Unit II

21

Example: The toLowerCase() and toUpperCase() methods

<html>

<body>

<script type="text/javascript">

var txt="Hello World!";

document.write(txt.toLowerCase() + "
");

document.write(txt.toUpperCase());

</script>

</body>

</html>

Example: The match() method --- How to search for a specified value within a string.

<html>

<body>

<script type="text/javascript">

var str="Hello world!";

document.write(str.match("world") + "
");

document.write(str.match("World") + "
");

document.write(str.match("worlld") + "
");

document.write(str.match("world!"));

</script>

</body>

</html>

Example: Replace characters in a string - replace()

<html>

</html>

<body>

<script type="text/javascript">

var str="Visit Microsoft!";

document.write(str.replace("Microsoft","W3Schools"));

</script>

</body>

Example: The indexOf() method

<html>
<body>

<script type="text/javascript">

var str="Hello world!";

document.write(str.indexOf("d") + "
");

document.write(str.indexOf("WORLD") + "
");

document.write(str.indexOf("world"));

</script></body></html>

Web Technologies Unit II

22

Math Object

 The Math object allows you to perform mathematical tasks.

 Math is not a constructor. All properties/methods of Math can be called by using

Math as an object, without creating it.

Syntax

var x = Math.PI; // Returns PI

var y = Math.sqrt(16); // Returns the square root of 16

Math Object Properties

Property Description

E Returns Euler's number (approx. 2.718)

LN2 Returns the natural logarithm of 2 (approx. 0.693)

LN10 Returns the natural logarithm of 10 (approx. 2.302)

LOG2E Returns the base-2 logarithm of E (approx. 1.442)

LOG10E Returns the base-10 logarithm of E (approx. 0.434)

PI Returns PI (approx. 3.14159)

SQRT1_2 Returns the square root of 1/2 (approx. 0.707)

SQRT2 Returns the square root of 2 (approx. 1.414)

Math Object Methods

Method Description

abs(x) Returns the absolute value of x

acos(x) Returns the arccosine of x, in radians

asin(x) Returns the arcsine of x, in radians

atan(x) Returns the arctangent of x as a numeric value between -PI/2 and PI/2 radians

ceil(x) Returns x, rounded upwards to the nearest integer

cos(x) Returns the cosine of x (x is in radians)

exp(x) Returns the value of Ex

floor(x) Returns x, rounded downwards to the nearest integer

log(x) Returns the natural logarithm (base E) of x

max(x,y,z,...,n) Returns the number with the highest value

min(x,y,z,...,n) Returns the number with the lowest value

pow(x,y) Returns the value of x to the power of y

random() Returns a random number between 0 and 1

round(x) Rounds x to the nearest integer

sin(x) Returns the sine of x (x is in radians)

Web Technologies Unit II

23

sqrt(x) Returns the square root of x

tan(x) Returns the tangent of an angle

Example: abs(x) Returns the absolute value of x

<script type="text/javascript">

document.write(Math.abs(7.25) + "
");

document.write(Math.abs(-7.25) + "
");

document.write(Math.abs(null) + "
");

document.write(Math.abs("Hello") + "
");

document.write(Math.abs(7.25-10));

</script>

The output of the code above will be:

7.25

7.25

0

NaN

2.75

Example: acos(x)

<script type="text/javascript">

document.write(Math.acos(0.64) + "
");

document.write(Math.acos(0) + "
");

document.write(Math.acos(-1) + "
");

document.write(Math.acos(1) + "
");

document.write(Math.acos(2));

</script>

The output of the code above will be:

0.8762980611683406

1.5707963267948965

3.141592653589793

0

NaN

Web Technologies Unit II

24

Example: floor()

 The floor() method rounds a number DOWNWARDS to the nearest integer, and

returns the result.

<script type="text/javascript">

document.write(Math.floor(0.60) + "
");

document.write(Math.floor(0.40) + "
");

document.write(Math.floor(5) + "
");

document.write(Math.floor(5.1) + "
");

document.write(Math.floor(-5.1) + "
");

document.write(Math.floor(-5.9));

</script>

The output of the code above will be:

0

0

5

5

-6

-6

JavaScript max() Method

 The max() method returns the number with the highest value.

Syntax

Math.max(x,y,z,...,n)

Parameter Description

x,y,z,...,n
Optional. One or more numbers.

If no arguments are given, the result is -Infinity

Example:

<script type="text/javascript">

document.write(Math.max(5,10) + "
");

document.write(Math.max(0,150,30,20,38) + "
");

</script>

Web Technologies Unit II

25

Arrays

 An array is an ordered set of data elements which can be accessed through a single

variable name.

 We can access the data elements either sequentially by reading from the start of the

array, or by their index.

 The index is the position of the element in the array (first element begins at position

0 and last at arraylength -1)

Creating Arrays: There are three different ways to create arrays.

1. The easiest way is simply to create a variable and pass it some elements in array

format.

var days=[“Monday”,”Tuesday”,”Wednesday”];

2. The second approach is to create an array object using the key word new and a set

of elements to store.

var days=new Array(“Monday”,”Tuesday”,”Wednesday”);

3. Finally, an empty array object which has a space for a number of elements can be

created.

var days=new Array(3);

Note: JavaScript can hold mixed data types as following examples show:

var days=[“Monday”,”Tuesday”,23, 45.78, ”Wednesday”];

Array Object Properties

Property Description

constructor Returns the function that created the Array object's prototype

length Sets or returns the number of elements in an array

Array Object Methods

Method Description

concat() Joins two or more arrays, and returns a copy of the joined arrays

join() Joins all elements of an array into a string

pop() Removes the last element of an array, and returns that element

Web Technologies Unit II

26

push() Adds new elements to the end of an array, and returns the new length

reverse() Reverses the order of the elements in an array

shift() Removes the first element of an array, and returns that element

slice() Selects a part of an array, and returns the new array

sort() Sorts the elements of an array

splice() Adds/Removes elements from an array

toString() Converts an array to a string, and returns the result

unshift() Adds new elements to the beginning of an array, and returns the new length

valueOf() Returns the primitive value of an array

Example: Creating an array

<html>
<body>

<script type="text/javascript">

var mycars = new Array();

mycars[0] = "Saab";

mycars[1] = "Volvo";

mycars[2] = "BMW";

for (i=0;i<mycars.length;i++)

{

</html>

}

</script>

</body>

document.write(mycars[i] + "
");

Example: for..in

<html>
<body>

<script type="text/javascript">

var x;

var mycars = new Array();

mycars[0] = "Saab";

mycars[1] = "Volvo";

mycars[2] = "BMW";

for (x in mycars)

{

document.write(mycars[x] + "
");

}

</script></body></html>

Web Technologies Unit II

27

Example:concat() mathod

<script type="text/javascript">

var parents = ["Jani", "Tove"];

var children = ["Cecilie", "Lone"];

var family = parents.concat(children);

document.write(family);

</script>

Example: join()

<script type="text/javascript">
[[[[[[[[[[[[

</script>

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.join() + "
");

document.write(fruits.join("+") + "
");

document.write(fruits.join(" and "));

Example: pop() method

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.pop() + "
");

document.write(fruits + "
");

document.write(fruits.pop() + "
");

document.write(fruits);

</script>

Example:slice() method

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.slice(0,1) + "
");

document.write(fruits.slice(1) + "
");

document.write(fruits.slice(-2) + "
");

document.write(fruits);

</script>

Web Technologies Unit II

28

Example: push()

 The push() method adds new elements to the end of an array, and returns the new

length.

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.push("Kiwi") + "
");

document.write(fruits.push("Lemon","Pineapple") + "
");

document.write(fruits);

</script>

Example: valueOf()

 The valueOf() method returns the primitive value of an array.

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.valueOf());

</script>

Output: Banana,Orange,Apple,Mango

Example:shift()

 The shift() method removes the first element of an array, and returns that element.

<script type="text/javascript">

var fruits = ["Banana", "Orange", "Apple", "Mango"];

document.write(fruits.shift() + "
");

document.write(fruits + "
");

document.write(fruits.shift() + "
");

document.write(fruits);

</script>

Output:

Banana

Orange,Apple,Mango

Orange

Apple,Mango

Web Technologies Unit II

29

Date Object

 The Date object is used to work with dates and times.

 Date objects are created with new Date().

 There are four ways of instantiating a date:

1. var d = new Date(); - creates an empty date object

2. var d = new Date(milliseconds); - constructs a new date object upon the

number of milliseconds which have elapsed since 00:00:00 on 01/01/1970.

3. var d = new Date(dateString); - create a date object based upon the contents of

a text string. The string must be in the format which is created by the

Date.parse() function.

4. var d = new Date(year, month, day, hours, minutes, seconds, milliseconds); -

create a new date object based upon numerical values for the year, month and

day. January is represented by the integer value 0, December by 11.

 Parse(String) – returns the number of milliseconds since midnight on 01/01/1970

which the string represents. The string must be the following format:

Mon, 9 April 2001 14:02:35

Date Object Methods

Method Description

getDate() Returns the day of the month (from 1-31)

getDay() Returns the day of the week (from 0-6)

getFullYear() Returns the year (four digits)

getHours() Returns the hour (from 0-23)

getMilliseconds() Returns the milliseconds (from 0-999)

getMinutes() Returns the minutes (from 0-59)

getMonth() Returns the month (from 0-11)

getSeconds() Returns the seconds (from 0-59)

getTime() Returns the number of milliseconds since midnight Jan 1, 1970

setDate() Sets the day of the month (from 1-31)

setFullYear() Sets the year (four digits)

setHours() Sets the hour (from 0-23)

setMilliseconds() Sets the milliseconds (from 0-999)

setMinutes() Set the minutes (from 0-59)

setMonth() Sets the month (from 0-11)

setSeconds() Sets the seconds (from 0-59)

setTime()
Sets a date and time by adding or subtracting a specified number of

milliseconds to/from midnight January 1, 1970

Web Technologies Unit II

30

setYear() Deprecated. Use the setFullYear() method instead

toGMTString() Deprecated. Use the toUTCString() method instead

toString() Converts a Date object to a string

Example:

<html>

<body>

<script type="text/javascript">

var d=new Date();

document.write(d);

</script>

</body>

</html>

Output: Sat Dec 25 20:08:07 UTC+0530 2010

Example: getTime()

 Returns the number of milliseconds since midnight Jan 1, 1970

<html>
<body>

<script type="text/javascript">

var d=new Date();

document.write(d.getTime() + " milliseconds since 1970/01/01");

</script>

</body>

</html>

Output: 1293288029234 milliseconds since 1970/01/01

Example: setFullYear()

<html>
<body>

<script type="text/javascript">

var d = new Date();

d.setFullYear(1992,10,3);

document.write(d);

Web Technologies Unit II

31

</script>

</body>

</html>

Output: Tue Nov 3 20:12:01 UTC+0530 1992

Example:

<html>

<body onload="datefun()">

<script type="text/javascript">

function datefun()

{

is:"+yesterday+"</h3>");

}

</script>

</body>

</html>

var today=new Date();

var yesterday=new Date();

var diff=today.getDate()-1;

yesterday.setDate(diff);

document.write("<h3>The Date is:"+today+"</h3>");

document.write("<h3>The Yesterday Date

Output: The Date is:Sat Dec 25 20:22:43 UTC+0530 2010

The Yesterday Date is:Fri Dec 24 20:22:43 UTC+0530 2010

Web Technologies Unit II

32

.

JavaScript - Catching Errors

 When browsing Web pages on the internet, we all have seen a JavaScript alert box

telling us there is a runtime error and asking "Do you wish to debug?".

 Error message like this may be useful for developers but not for users. When users

see errors, they often leave the Web page.

The try...catch Statement

 The try...catch statement allows you to test a block of code for errors. The try block

contains the code to be run, and the catch block contains the code to be executed if an

error occurs.

Syntax

try

{

}

catch(err)

{

}

//Run some code here

//Handle errors here

Note: note that try...catch is written in lowercase letters. Using uppercase letters will

generate a JavaScript error!

Example

 The example below is supposed to alert "Welcome guest!" when the button is clicked.

However, there's a typo in the message() function. alert() is misspelled as adddlert().

A JavaScript error occurs. The catch block catches the error and executes a custom

code to handle it. The code displays a custom error message informing the user what

happened.

<html>

<head>

<script type="text/javascript">

var txt="";

function message()

{

try

{

adddlert("Welcome guest!");

}

catch(err)

{

txt="There was an error on this page.\n\n";

Web Technologies Unit II

33

.

txt+="Error description: " + err.description + "\n\n";

txt+="Click OK to continue.\n\n";

alert(txt);

}

}

</script>

</head>

<body>

<input type="button" value="View message" onclick="message()" />

</body>

</html>

Output:

The Throw Statement

 The throw statement allows you to create an exception. If you use this statement

together with the try...catch statement, you can control program flow and generate

accurate error messages.

Web Technologies Unit II

34

.

Syntax:

throw(exception)

 The exception can be a string, integer, Boolean or an object.

 Note that throw is written in lowercase letters. Using uppercase letters will generate a
JavaScript error!

Example

The example below determines the value of a variable called x. If the value of x is higher

than 10, lower than 0, or not a number, we are going to throw an error. The error is then

caught by the catch argument and the proper error message is displayed:

<html>

<body>

<script type="text/javascript">

var x=prompt("Enter a number between 0 and 10:","");

try

{

if(x>10)

{

throw "Err1";

}

else if(x<0)

{

throw "Err2";

}

else if(isNaN(x))

{

throw "Err3";

}

}

catch(er)

{

if(er=="Err1")

{

alert("Error! The value is too high");

}

if(er=="Err2")

{

alert("Error! The value is too low");

}

if(er=="Err3")

{

Web Technologies Unit II

35

.

alert("Error! The value is not a number");

}

}

</script>

</body>

</html>

Output

Web Technologies Unit II

36

.

Built in Objects

The Document Object

 A document is a Web page that is being either displayed or created. The document has

a number of properties that can be accessed by JavaScript programs and used to
manipulate the content of the page.

 Some of these properties can be used to create HTML pages from with in JavaScript

while others may be used to change the operation of the current page.

Methods:

write/writeln : HTML pages can be created on the fly using JavaScript.

bgcolor, fgcolor: These are the same properties that can be set in the <BODY> tag.

The difference here is that the values can be set from within a JavaScript.

The methods accept either hexadecimal values or common names for colors.

Example:

document.bgcolor=”coral”;

document.fgcolor=”coral”;

anchors/links: The anchors property is an array of these names in the order in which

they appear in the HTML document.

Example: document.anchors[0];

forms: This is an array in the order of the document. This one contains all of the

HTML forms. By combining this array with the individual form objects each

form item can be accessed.

close(): The document isn’t completely written until the close() method has been

called. If you don’t use this method then the browser will keep waiting for

more data even if there is none.

The Form Object

 Two aspects of the form can be manipulated through JavaScript.

1. First, most commonly and probably most usefully, the data that is entered onto

your form can be checked at submission.

2. Second you can actually build forms through JavaScript.

 The elements of the form are held in an array.

Example:

<html>

<head>

Web Technologies Unit II

37

.

<script type="text/javascript">

function validate()

{

var method=document.forms[0].method;

var action=document.forms[0].action;

var value=document.forms[0].elements[0].value;

if(value=="suresh")

{

}

else

{

}

alert("Hi "+value);

document.forms[0].reset();

}

</script>

</head>

<body>

<form method="suresh@gmail.com" method="post">

<input type="text" name="User" size="10">

<input type="submit" value="Press Me!" onClick="validate()">

</form>

</body>

</html>

Events on the Form Object:

1. onClick=”method”

This can be applied to all form elements. The event is triggered when the user clicks

on that element.

2. onSubmit=”method”

This even can only be triggered by the form itself and occurs when a form is

submitted.

3. onReset=”method”

Like the previous one this is a form-only event and is triggered when a form is reset

by the user.

mailto:suresh@gmail.com

Web Technologies Unit II

38

.

Events

 By using JavaScript, we have the ability to create dynamic web pages. Events are

actions that can be detected by JavaScript.

 Every element on a web page has certain events which can trigger a JavaScript. For

example, we can use the onClick event of a button element to indicate that a function
will run when a user clicks on the button. We define the events in the HTML tags.

 Examples of events:

A mouse click

A web page or an image loading

Mousing over a hot spot on the web page

Selecting an input field in an HTML form

Submitting an HTML form

A keystroke

Note: Events are normally used in combination with functions, and the function will

not be executed before the event occurs!

<body> and <frameset> Events

The two attributes below can only be used in <body> or <frameset>:

Attribute Description

onLoad Script to be run when a document load

onUnload Script to be run when a document unload

Form Events

The attributes below can be used in form elements:

Attribute Description

onBlur Script to be run when an element loses focus

onChange Script to be run when an element change

onFocus Script to be run when an element gets focus

onReset Script to be run when a form is reset

onSelect Script to be run when an element is selected

onSubmit Script to be run when a form is submitted

Web Technologies Unit II

39

.

Image Events

The attribute below can be used with the img element:

Attribute Description

onAbort Script to be run when loading of an image is interrupted

Keyboard Events

Attribute Description

onKeyDown Script to be run when a key is pressed

onKeyPress Script to be run when a key is pressed and released

OnKeyUp Script to be run when a key is released

Mouse Events

Attribute Description

onClick Script to be run on a mouse click

onDblClick Script to be run on a mouse double-click

onMouseDown Script to be run when mouse button is pressed

onMouseMove Script to be run when mouse pointer moves

onMouseOut
Script to be run when mouse pointer moves out of an

element

onMouseOver
Script to be run when mouse pointer moves over an

element

onMouseUp Script to be run when mouse button is released

JavaScript Objects and Event Handlers

Object Event Handlers

Window
onload

onblur

onunload

onfocus

Link
onclick onmouseout

onmouseover onmouseout

Image onabort onerror onload

text

textarea

password

onblur

onfocus

onchange

onselect

Web Technologies Unit II

40

.

button

reset

submit

radio

checkbox

onclick

select onblur onchange onfocus

Example:

	What is JavaScript?
	What can a JavaScript do?
	The Real Name is ECMAScript
	Example:
	Output:
	Where to Put the JavaScript
	Scripts in <head>
	Example
	Output: (1)
	Example (1)
	Scripts in <head> and <body>
	Example (2)
	Using an External JavaScript
	Example (3)
	JavaScript Comments:
	Do You Remember Algebra From School?
	JavaScript Variables
	Declaring (Creating) JavaScript Variables
	Assigning Values to Undeclared JavaScript Variables
	JavaScript Arithmetic Operators
	JavaScript Assignment Operators
	The + Operator Used on Strings
	JavaScript Comparison and Logical Operators
	Comparison Operators
	Logical Operators
	Conditional Operator
	Syntax
	Control Structures If Statement
	Syntax (1)
	If...else Statement
	Syntax (2)
	If...else if...else Statement
	Syntax (3)
	The JavaScript Switch Statement
	Syntax (4)
	JavaScript Popup Boxes
	Alert Box
	Syntax (5)
	Example (4)
	Output: (2)
	Confirm Box
	Syntax (6)
	Example (5)
	Output: (3)
	Prompt Box
	Syntax (7)
	Example (6)
	Output: (4)
	The for Loop
	Syntax (8)
	Example (7)
	The while Loop
	Syntax (9)
	Example (8)
	The do...while Loop
	Syntax (10)
	Example (9)
	The break Statement
	Example (10)
	The continue Statement
	Example (11)
	JavaScript for...in Statement
	Syntax (11)
	Example (12)
	JavaScript Functions
	How to Define a Function Syntax
	Example (13)
	The return Statement
	Example (14)
	String object
	String Object Properties
	Example: The toLowerCase() and toUpperCase() methods
	Example: The match() method --- How to search for a specified value within a string.
	Example: Replace characters in a string - replace()
	Example: The indexOf() method
	Math Object
	Syntax (12)
	Math Object Properties
	The output of the code above will be:
	Example: acos(x)
	The output of the code above will be: (1)
	Example: floor()
	The output of the code above will be: (2)
	JavaScript max() Method
	Syntax (13)
	Example: (1)
	Arrays
	Array Object Properties
	Example: for..in
	Example:concat() mathod
	Example: join()
	Example: pop() method
	Example:slice() method
	Example: push()
	Example: valueOf()
	Example:shift()
	Output: (5)
	Date Object
	Date Object Methods
	Example: getTime()
	Example: setFullYear()
	Example: (2)
	JavaScript - Catching Errors
	The try...catch Statement
	Syntax (14)
	Example (15)
	Output: (6)
	Syntax:
	Example (16)
	Output
	Methods:
	The Form Object
	Example: (3)
	Events on the Form Object:
	2. onSubmit=”method”
	3. onReset=”method”
	Events
	<body> and <frameset> Events
	Form Events
	Image Events
	Keyboard Events

